Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
1.
Nat Commun ; 12(1): 4911, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389710

RESUMO

The mammalian sensory neocortex consists of hierarchically organized areas reciprocally connected via feedforward (FF) and feedback (FB) circuits. Several theories of hierarchical computation ascribe the bulk of the computational work of the cortex to looped FF-FB circuits between pairs of cortical areas. However, whether such corticocortical loops exist remains unclear. In higher mammals, individual FF-projection neurons send afferents almost exclusively to a single higher-level area. However, it is unclear whether FB-projection neurons show similar area-specificity, and whether they influence FF-projection neurons directly or indirectly. Using viral-mediated monosynaptic circuit tracing in macaque primary visual cortex (V1), we show that V1 neurons sending FF projections to area V2 receive monosynaptic FB inputs from V2, but not other V1-projecting areas. We also find monosynaptic FB-to-FB neuron contacts as a second motif of FB connectivity. Our results support the existence of FF-FB loops in primate cortex, and suggest that FB can rapidly and selectively influence the activity of incoming FF signals.


Assuntos
Biorretroalimentação Psicológica/fisiologia , Macaca fascicularis/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Feminino , Corpos Geniculados/citologia , Corpos Geniculados/fisiologia , Modelos Neurológicos , Reflexo Monosináptico/fisiologia , Córtex Visual/citologia
2.
BMC Neurosci ; 22(1): 23, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33794775

RESUMO

BACKGROUND: Tau theory explains how both intrinsically and perceptually guided movements are controlled by the brain. According to general tau theory, voluntary, self-paced human movements are controlled by coupling the tau of the movement (i.e., the rate of closure of the movement gap at its current closure rate) onto an intrinsically generated tau-guide (Lee in Ecol Psychol 10:221-250, 1998). To date there are no studies that have looked at involuntary movements, which are directly guided by innate patterns of neural energy generated at the level of the spinal cord or brain, and that can be explained by general tau theory. This study examines the guidance of an involuntary movement generated by the Patellar reflex in presence of a minimized gravitational field. RESULTS: The results showed that the Patellar reflexive movement is strongly coupled to an intrinsic tau-guide particularly when the limb is not moving in the direction of gravity. CONCLUSION: These results suggest that the same principles of control underpin both voluntary and involuntary movements irrespective of whether they are generated in the brain or the spinal cord. Secondly, given that movements like the patellar reflex are visible from infancy, one might conclude that tau-guidance is an innate form of motor control, or neural blueprint, that has evolved over time.


Assuntos
Modelos Neurológicos , Movimento/fisiologia , Reflexo Monosináptico/fisiologia , Adulto , Feminino , Humanos , Masculino , Medula Espinal/fisiologia
3.
Neurosci Lett ; 745: 135622, 2021 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-33421494

RESUMO

A subthreshold pulse of transcranial magnetic stimulation (TMS) on the motor cortex can modulate the amplitude of the monosynaptic reflex (H-reflex) elicited in the flexor carpi radialis (FCR) muscle, a method known as TMS-conditioning of the H-reflex. The purpose of this study was to establish the intersession reliability of this method over the course of three sessions. Eleven healthy participants received either peripheral nerve stimulation (PNS), TMS or a combination of the two. The intensity of the PNS stimuli was set to evoke a monosynaptic response (H-reflex) corresponding to 10 % of the maximum motor response (Mmax), HM10 %. The conditioning effect of TMS on the monosynaptic reflex was assessed by delivering subthreshold cortical pulses at different conditioning-test intervals (from -7 ms to 7 ms) from peripheral nerve stimulation. The first interval at which facilitation could be observed was deemed early facilitation (EF). Using intraclass correlation coefficients (ICCs), we found excellent reliability for Mmax amplitudes (ICC = 0.98), HM10 % amplitudes (ICC = 0.85) and TMS-conditioned H-reflexes recorded at the interval following EF (EF + 2 ms) (ICC = 0.87). Good reliability (ICCs ranging from 0.67 to 0.77) was found for the other conditioning-test intervals. We conclude that TMS-conditioned H-reflexes are reliable parameters to assess the excitability of corticospinal circuits.


Assuntos
Potencial Evocado Motor/fisiologia , Músculo Esquelético/fisiologia , Reflexo Monosináptico/fisiologia , Estimulação Magnética Transcraniana/normas , Adulto , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Estimulação Magnética Transcraniana/métodos , Adulto Jovem
4.
J Neurophysiol ; 124(3): 985-993, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783594

RESUMO

Plastic adaptations are known to take place in muscles, tendons, joints, and the nervous system in response to changes in muscle activity. However, few studies have addressed how these plastic adaptations are related. Thus this study focuses on changes in the mechanical properties of the ankle plantarflexor muscle-tendon unit, stretch reflex activity, and spinal neuronal pathways in relation to cast immobilization. The left rat hindlimb from toes to hip was immobilized with a plaster cast for 1, 2, 4, or 8 wk followed by acute electrophysiological recordings to investigate muscle stiffness and stretch reflex torque. Moreover, additional acute experiments were performed after 4 wk of immobilization to investigate changes in the central gain of the stretch reflex. Monosynaptic reflexes (MSR) were recorded from the L4 and L5 ventral roots following stimulation of the corresponding dorsal roots. Rats developed reduced range of movement in the ankle joint 2 wk after immobilization. This was accompanied by significant increases in the stiffness of the muscle-tendon complex as well as an arthrosis at the ankle joint at 4 and 8 wk following immobilization. Stretch reflexes were significantly reduced at 4-8 wk following immobilization. This was associated with increased central gain of the stretch reflex. These data show that numerous interrelated plastic changes occur in muscles, connective tissue, and the central nervous system in response to changes in muscle use. The findings provide an understanding of coordinated adaptations in multiple tissues and have important implications for prevention and treatment of the negative consequences of immobilization following injuries of the nervous and musculoskeletal systems.NEW & NOTEWORTHY Immobilization leads to multiple simultaneous adaptive changes in muscle, connective tissue, and central nervous system.


Assuntos
Adaptação Fisiológica/fisiologia , Articulação do Tornozelo/fisiologia , Imobilização , Músculo Esquelético/fisiologia , Amplitude de Movimento Articular/fisiologia , Reflexo Monosináptico/fisiologia , Reflexo de Estiramento/fisiologia , Raízes Nervosas Espinhais/fisiologia , Animais , Atrofia , Masculino , Ratos , Ratos Sprague-Dawley
5.
Neuron ; 107(2): 368-382.e8, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32442399

RESUMO

The ventral tegmental area (VTA) has dopamine, GABA, and glutamate neurons, which have been implicated in reward and aversion. Here, we determined whether VTA-glutamate or -GABA neurons play a role in innate defensive behavior. By VTA cell-type-specific genetic ablation, we found that ablation of glutamate, but not GABA, neurons abolishes escape behavior in response to threatening stimuli. We found that escape behavior is also decreased by chemogenetic inhibition of VTA-glutamate neurons and detected increases in activity in VTA-glutamate neurons in response to the threatening stimuli. By ultrastructural and electrophysiological analysis, we established that VTA-glutamate neurons receive a major monosynaptic glutamatergic input from the lateral hypothalamic area (LHA) and found that photoinhibition of this input decreases escape responses to threatening stimuli. These findings indicate that VTA-glutamate neurons are activated by and required for innate defensive responses and that information on threatening stimuli to VTA-glutamate neurons is relayed by LHA-glutamate neurons.


Assuntos
Agressão/fisiologia , Ácido Glutâmico/fisiologia , Neurônios/fisiologia , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/fisiologia , Animais , Reação de Fuga , Humanos , Região Hipotalâmica Lateral/citologia , Região Hipotalâmica Lateral/fisiologia , Hipotálamo/citologia , Hipotálamo/fisiologia , Camundongos , Neurônios/ultraestrutura , Optogenética , Estimulação Luminosa , Reflexo Monosináptico/fisiologia , Área Tegmentar Ventral/ultraestrutura , Ácido gama-Aminobutírico/fisiologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-32174815

RESUMO

Background: The spinal cord's central pattern generators (CPGs) have been explained by the symmetrical half-center hypothesis, the bursts generator, computational models, and more recently by connectome circuits. Asymmetrical models, at odds with the half-center paradigm, are composed of extensor and flexor CPG modules. Other models include not only flexor and extensor motoneurons but also motoneuron pools controlling biarticular muscles. It is unknown whether a preferred model can explain some particularities that fictive scratching (FS) in the cat presents. The first aim of this study was to investigate FS patterns considering the aiming and the rhythmic periods, and second, to examine the effects of serotonin (5HT) on and segmental inputs to FS. Methods: The experiments were carried out first in brain cortex-ablated cats (BCAC), then spinalized (SC), and for the midcollicular (MCC) preparation. Subjects were immobilized and the peripheral nerves were used to elicit the Monosynaptic reflex (MR), to modify the scratching patterns and for electroneurogram recordings. Results: In BCAC, FS was produced by pinna stimulation and, in some cases, by serotonin. The scratching aiming phase (AP) initiates with the activation of either flexor or extensor motoneurons. Serotonin application during the AP produced simultaneous extensor and flexor bursts. Furthermore, WAY 100635 (5HT1A antagonist) produced a brief burst in the tibialis anterior (TA) nerve, followed by a reduction in its electroneurogram (ENG), while the soleus ENG remained silent. In SC, rhythmic phase (RP) activity was recorded in the soleus motoneurons. Serotonin or WAY produced FS bouts. The electrical stimulation of Ia afferent fibers produced heteronymous MRes waxing and waning during the scratch cycle. In MCC, FS began with flexor activity. Electrical stimulation of either deep peroneus (DP) or superficial peroneus (SP) nerves increased the duration of the TA electroneurogram. Medial gastrocnemius (MG) stretching or MG nerve electrical stimulation produced a reduction in the TA electroneurogram and an initial MG extensor burst. MRes waxed and waned during the scratch cycle. Conclusion: Descending pathways and segmental afferent fibers, as well as 5-HT and WAY, can change the FS pattern. To our understanding, the half-center hypothesis is the most suitable for explaining the AP in MCC.


Assuntos
Técnicas de Ablação , Córtex Cerebral/fisiologia , Estado de Descerebração/fisiopatologia , Nervos Periféricos/fisiologia , Reflexo Monosináptico/fisiologia , Medula Espinal/fisiologia , Técnicas de Ablação/métodos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Encéfalo/cirurgia , Gatos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/cirurgia , Estimulação Elétrica/métodos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Nervos Periféricos/efeitos dos fármacos , Reflexo Monosináptico/efeitos dos fármacos , Serotonina/administração & dosagem , Antagonistas da Serotonina/administração & dosagem , Medula Espinal/efeitos dos fármacos , Medula Espinal/cirurgia , Colículos Superiores/efeitos dos fármacos , Colículos Superiores/fisiologia , Colículos Superiores/cirurgia
7.
J Neurosci ; 39(49): 9767-9781, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31666353

RESUMO

Stress responses are coordinated by widespread neural circuits. Homeostatic and psychogenic stressors activate preproglucagon (PPG) neurons in the caudal nucleus of the solitary tract (cNTS) that produce glucagon-like peptide-1; published work in rodents indicates that these neurons play a crucial role in stress responses. While the axonal targets of PPG neurons are well established, their afferent inputs are unknown. Here we use retrograde tracing with cholera toxin subunit b to show that the cNTS in male and female mice receives axonal inputs similar to those reported in rats. Monosynaptic and polysynaptic inputs specific to cNTS PPG neurons were revealed using Cre-conditional pseudorabies and rabies viruses. The most prominent sources of PPG monosynaptic input include the lateral (LH) and paraventricular (PVN) nuclei of the hypothalamus, parasubthalamic nucleus, lateral division of the central amygdala, and Barrington's nucleus (Bar). Additionally, PPG neurons receive monosynaptic vagal sensory input from the nodose ganglia and spinal sensory input from the dorsal horn. Sources of polysynaptic input to cNTS PPG neurons include the hippocampal formation, paraventricular thalamus, and prefrontal cortex. Finally, cNTS-projecting neurons within PVN, LH, and Bar express the activation marker cFOS in mice after restraint stress, identifying them as potential sources of neurogenic stress-induced recruitment of PPG neurons. In summary, cNTS PPG neurons in mice receive widespread monosynaptic and polysynaptic input from brain regions implicated in coordinating behavioral and physiological stress responses, as well as from vagal and spinal sensory neurons. Thus, PPG neurons are optimally positioned to integrate signals of homeostatic and psychogenic stress.SIGNIFICANCE STATEMENT Recent research has indicated a crucial role for glucagon-like peptide-1-producing preproglucagon (PPG) neurons in regulating both appetite and behavioral and autonomic responses to acute stress. Intriguingly, the central glucagon-like peptide-1 system defined in rodents is conserved in humans, highlighting the translational importance of understanding its anatomical organization. Findings reported here indicate that PPG neurons receive significant monosynaptic and polysynaptic input from brain regions implicated in autonomic and behavioral responses to stress, as well as direct input from vagal and spinal sensory neurons. Improved understanding of the neural pathways underlying the recruitment of PPG neurons may facilitate the development of novel therapies for the treatment of stress-related disorders.


Assuntos
Neurônios/fisiologia , Proglucagon/fisiologia , Sinapses/fisiologia , Nervo Vago/fisiologia , Animais , Axônios/fisiologia , Feminino , Hipotálamo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Neurônios Aferentes/fisiologia , Células do Corno Posterior/fisiologia , Reflexo Monosináptico/fisiologia , Restrição Física , Núcleo Solitário/citologia , Núcleo Solitário/fisiologia , Estresse Psicológico/fisiopatologia , Tálamo/fisiologia
8.
Exp Brain Res ; 237(11): 2897-2909, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31492990

RESUMO

The output from a motor nucleus is determined by the synaptic input to the motor neurons and their intrinsic properties. Here, we explore whether the source of synaptic inputs to the motor neurons (cats) and the age or post-stroke conditions (humans) may change the recruitment gain of the motor neuron pool. In cats, the size of Ia EPSPs in triceps surae motor neurons (input) and monosynaptic reflexes (MSRs; output) was recorded in the soleus and medial gastrocnemius motor nerves following graded stimulation of dorsal roots. The MSR was plotted against the EPSP thereby obtaining a measure of the recruitment gain. Conditioning stimulation of sural and peroneal cutaneous afferents caused significant increase in the recruitment gain of the medial gastrocnemius, but not the soleus motor neuron pool. In humans, the discharge probability of individual soleus motor units (input) and soleus H-reflexes (output) was performed. With graded stimulation of the tibial nerve, the gain of the motor neuron pool was assessed as the slope of the relation between probability of firing and the reflex size. The gain in young subjects was higher than in elderly subjects. The gain in post-stroke survivors was higher than in age-matched neurologically intact subjects. These findings provide experimental evidence that recruitment gain of a motor neuron pool contributes to the regulation of movement at the final output stage from the spinal cord and should be considered when interpreting changes in reflex excitability in relation to movement or injuries of the nervous system.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Reflexo Monosináptico/fisiologia , Nervo Isquiático/fisiologia , Medula Espinal/fisiologia , Adulto , Vias Aferentes/fisiologia , Idoso , Envelhecimento/fisiologia , Animais , Gatos , Reflexo H/fisiologia , Humanos , Técnicas de Patch-Clamp , Acidente Vascular Cerebral/fisiopatologia , Adulto Jovem
9.
eNeuro ; 5(5)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30406182

RESUMO

In order to successfully perform motor tasks such as locomotion, the central nervous system must coordinate contractions of antagonistic and synergistic muscles across multiple joints. This coordination is largely dependent upon the function of proprioceptive afferents (PAs), which make monosynaptic connections with homonymous motoneurons. Homonymous pathways have been well studied in both health and disease but their collateral fibers projecting to heteronymous, synergistic muscles receive relatively less attention. This is surprising given that PA collaterals have significant effects on the excitability of heteronymous motoneurons, and that their synaptic terminal density is activity dependent. It is likely that the relative lack of literature is due to the lack of a preparation which allows synergistic heteronymous pathways to be assessed in vivo. Here, we describe a method to simultaneously evoke homonymous and heteronymous (synergistic) monosynaptic reflexes (MSRs) and study their modulation by descending pathways in adult rats. Through stimulation of the medial plantar nerve, we were able to produce an H reflex in the intrinsic foot (IF) muscles of the hind paw with a latency of 10.52 ± 3.8 ms. Increasing the stimulus intensity evoked a robust signal with a monosynaptic latency (11.32 ± 0.35 ms), recorded in the ipsilateral gastrocnemius (Gs). Our subsequent analyses suggest that Gs motoneurons were activated via heteronymous afferent collaterals from the medial plantar nerve. These reflexes could be evoked bilaterally and were modulated by conditioning stimuli to the cortex (Cx) and reticular formation. Interestingly, cortical stimulation was equally efficient at modulating both ipsilateral and contralateral reflexes, indicating that cortical modulation of lumbar sensory afferents lacks the laterality demonstrated by studies of cortical muscle activation. This technique represents a novel, relatively simple way to assess heteronymous afferent pathways in normal motor control as well as in models of motor disorders where adaptive and maladaptive plasticity of PAs and descending systems affects functional outcomes.


Assuntos
Vias Aferentes/fisiologia , Neurônios Motores/fisiologia , Reflexo Monosináptico/fisiologia , Sinapses/fisiologia , Animais , Locomoção/fisiologia , Músculo Esquelético/fisiologia , Neurônios Aferentes/fisiologia , Ratos Wistar
10.
J Vis Exp ; (132)2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29553525

RESUMO

Here, a new technique termed Tetrotoxin (TTX) Engineered Resistance for Probing Synapses (TERPS) is applied to test for monosynaptic connections between target neurons. The method relies on co-expression of a transgenic activator with the tetrodotoxin-resistant sodium channel, NaChBac, in a specific presynaptic neuron. Connections with putative post-synaptic partners are determined by whole-cell recordings in the presence of TTX, which blocks electrical activity in neurons that do not express NaChBac. This approach can be modified to work with any activator or calcium imaging as a reporter of connections. TERPS adds to the growing set of tools available for determining connectivity within networks. However, TERPS is unique in that it also reliably reports bulk or volume transmission and spillover transmission.


Assuntos
Neurônios/efeitos dos fármacos , Canais de Sódio/fisiologia , Sinapses/efeitos dos fármacos , Tetrodotoxina/farmacologia , Animais , Drosophila , Interneurônios/efeitos dos fármacos , Interneurônios/fisiologia , Neurônios/fisiologia , Reflexo Monosináptico/efeitos dos fármacos , Reflexo Monosináptico/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
11.
J Neurosci ; 37(26): 6372-6387, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28576940

RESUMO

The formation of mature spinal motor circuits is dependent on both activity-dependent and independent mechanisms during postnatal development. During this time, reorganization and refinement of spinal sensorimotor circuits occurs as supraspinal projections are integrated. However, specific features of postnatal spinal circuit development remain poorly understood. This study provides the first detailed characterization of rat spinal sensorimotor circuit development in the presence and absence of descending systems. We show that the development of proprioceptive afferent input to motoneurons (MNs) and Renshaw cells (RCs) is disrupted by thoracic spinal cord transection at postnatal day 5 (P5TX). P5TX also led to malformation of GABApre neuron axo-axonic contacts on Ia afferents and of the recurrent inhibitory circuit between MNs and RCs. Using a novel in situ perfused preparation for studying motor control, we show that malformation of these spinal circuits leads to hyperexcitability of the monosynaptic reflex. Our results demonstrate that removing descending input severely disrupts the development of spinal circuits and identifies key mechanisms contributing to motor dysfunction in conditions such as cerebral palsy and spinal cord injury.SIGNIFICANCE STATEMENT Acquisition of mature behavior during postnatal development correlates with the arrival and maturation of supraspinal projections to the spinal cord. However, we know little about the role that descending systems play in the maturation of spinal circuits. Here, we characterize postnatal development of key spinal microcircuits in the presence and absence of descending systems. We show that formation of these circuits is abnormal after early (postnatal day 5) removal of descending systems, inducing hyperexcitability of the monosynaptic reflex. The study is a detailed characterization of spinal circuit development elucidating how these mechanisms contribute to motor dysfunction in conditions such as cerebral palsy and spinal cord injury. Understanding these circuits is crucial to developing new therapeutics and improving existing ones in such conditions.


Assuntos
Envelhecimento/fisiologia , Vias Eferentes/fisiologia , Neurônios Motores/fisiologia , Neurogênese/fisiologia , Reflexo Monosináptico/fisiologia , Medula Espinal/fisiologia , Animais , Feminino , Masculino , Rede Nervosa/fisiologia , Ratos Wistar
12.
Exp Brain Res ; 234(8): 2235-44, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27010723

RESUMO

Effects of low-threshold afferents from the flexor digitorum superficialis (FDS) to the extensor carpi radialis (ECR) motoneurons were examined using a post-stimulus time-histogram (PSTH) and electromyogram-averaging (EMG-A) methods in eight healthy human subjects. In the PSTH study in five of the eight subjects, electrical conditioning stimuli (ES) to the median nerve branch innervating FDS with the intensity below the motor threshold induced excitatory effects (facilitation) in 39 out of 92 ECR motor units. In 11 ECR motor units, the central synaptic delay of the facilitation was -0.1 ± 0.3 ms longer than that of the homonymous facilitation of ECR. Mechanical conditioning stimuli (MS) to FDS with the intensity below the threshold of the tendon(T)-wave-induced facilitation in 51 out of 51 ECR motor units. With the EMG-A method, early and significant peaks were produced by ES and MS in all the eight subjects. The difference between latencies of the peaks by ES and MS was almost equivalent to that of the Hoffmann- and T-waves of FDS by ES and MS. The peak was diminished by tonic vibration stimuli to FDS. These findings suggest that a facilitation from FDS to ECR exists in humans and group Ia afferents mediate the facilitation through a monosynaptic path.


Assuntos
Dedos/fisiologia , Antebraço/fisiologia , Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Reflexo Monosináptico/fisiologia , Adulto , Estimulação Elétrica , Eletromiografia , Feminino , Dedos/inervação , Antebraço/inervação , Humanos , Masculino , Estimulação Física , Adulto Jovem
13.
Neural Plast ; 2014: 786985, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24778886

RESUMO

Renshaw recurrent inhibition (RI) plays an important gated role in spinal motion circuit. Peripheral nerve injury is a common disease in clinic. Our current research was designed to investigate the change of the recurrent inhibitory function in the spinal cord after the peripheral nerve crush injury in neonatal rat. Sciatic nerve crush was performed on 5-day-old rat puppies and the recurrent inhibition between lateral gastrocnemius-soleus (LG-S) and medial gastrocnemius (MG) motor pools was assessed by conditioning monosynaptic reflexes (MSR) elicited from the sectioned dorsal roots and recorded either from the LG-S and MG nerves by antidromic stimulation of the synergist muscle nerve. Our results demonstrated that the MSR recorded from both LG-S or MG nerves had larger amplitude and longer latency after neonatal sciatic nerve crush. The RI in both LG-S and MG motoneuron pools was significantly reduced to virtual loss (15-20% of the normal RI size) even after a long recovery period upto 30 weeks after nerve crush. Further, the degree of the RI reduction after tibial nerve crush was much less than that after sciatic nerve crush indicatig that the neuron-muscle disconnection time is vital to the recovery of the spinal neuronal circuit function during reinnervation. In addition, sciatic nerve crush injury did not cause any spinal motor neuron loss but severally damaged peripheral muscle structure and function. In conclusion, our results suggest that peripheral nerve injury during neonatal early development period would cause a more sever spinal cord inhibitory circuit damage, particularly to the Renshaw recurrent inhibition pathway, which might be the target of neuroregeneration therapy.


Assuntos
Animais Recém-Nascidos/fisiologia , Compressão Nervosa , Inibição Neural/fisiologia , Nervo Isquiático/patologia , Animais , Estimulação Elétrica , Fenômenos Eletrofisiológicos/fisiologia , Membro Posterior/inervação , Peroxidase do Rábano Silvestre , Masculino , Neurônios Motores/fisiologia , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Regeneração Nervosa/fisiologia , Ratos , Ratos Wistar , Reflexo Monosináptico/fisiologia , Nervo Tibial/fisiologia
14.
J Neurotrauma ; 31(12): 1083-7, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24484172

RESUMO

Activity-based interventions such as locomotor training or passive cycling have a positive influence on the spinal circuitry and recovery following a spinal cord injury (SCI). The use of quipazine in combination with exercise training has demonstrated a greater functional recovery than has exercise training alone. However, the influence of exercise or training on the responsiveness of the spinal cord to quipazine has not been examined following a chronic spinal transection. The purpose of this study was to characterize the flexor and extensor monosynaptic reflex (MSR) response pre- and post-quipazine in chronic complete spinally transected rats that either underwent daily passive cycling for 3 months or did not receive passive cycling. Following a chronic spinal transection, the extensor MSR demonstrated a hyperreflexive response (fivefold increase) to afferent stimuli, and did not respond to quipazine injection. With daily passive cycling, the extensor MSR hyperexcitability was attenuated, and the MSR amplitude increased 72% following quipazine injection (p<0.004), which was comparable to the extensor MSR response (94%) in the control group. For both chronic spinal transection groups, the flexor MSR amplitudes were not altered following quipazine injection, whereas in the control group the flexor MSR amplitude increased 86% in response to quipazine (p<0.004). These results demonstrate that passive cycling attenuates the hyperreflexive response of the extensor MSR following a chronic SCI, and restores the MSR response to quipazine.


Assuntos
Terapia por Exercício/métodos , Quipazina/farmacologia , Recuperação de Função Fisiológica/fisiologia , Reflexo Monosináptico/fisiologia , Agonistas do Receptor de Serotonina/farmacologia , Traumatismos da Medula Espinal/terapia , Animais , Terapia Combinada , Modelos Animais de Doenças , Feminino , Quipazina/administração & dosagem , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Reflexo Monosináptico/efeitos dos fármacos , Agonistas do Receptor de Serotonina/administração & dosagem , Traumatismos da Medula Espinal/tratamento farmacológico
15.
J Neurophysiol ; 108(1): 83-90, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22490553

RESUMO

Muscle sensory axons induce the development of specialized intrafusal muscle fibers in muscle spindles during development, but the role that the intrafusal fibers may play in the development of the central projections of these Ia sensory axons is unclear. In the present study, we assessed the influence of intrafusal fibers in muscle spindles on the formation of monosynaptic connections between Ia (muscle spindle) sensory axons and motoneurons (MNs) using two transgenic strains of mice. Deletion of the ErbB2 receptor from developing myotubes disrupts the formation of intrafusal muscle fibers and causes a nearly complete absence of functional synaptic connections between Ia axons and MNs. Monosynaptic connectivity can be fully restored by postnatal administration of neurotrophin-3 (NT-3), and the synaptic connections in NT-3-treated mice are as specific as in wild-type mice. Deletion of the Egr3 transcription factor also impairs the development of intrafusal muscle fibers and disrupts synaptic connectivity between Ia axons and MNs. Postnatal injections of NT-3 restore the normal strengths and specificity of Ia-motoneuronal connections in these mice as well. Severe deficits in intrafusal fiber development, therefore, do not disrupt the establishment of normal, selective patterns of connections between Ia axons and MNs, although these connections require the presence of NT-3, normally supplied by intrafusal fibers, to be functional.


Assuntos
Neurônios Motores/fisiologia , Fusos Musculares/fisiologia , Reflexo Monosináptico/fisiologia , Actinas/genética , Animais , Animais Recém-Nascidos , Relação Dose-Resposta a Droga , Proteína 3 de Resposta de Crescimento Precoce/genética , Estimulação Elétrica , Humanos , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Neurônios Motores/efeitos dos fármacos , Fusos Musculares/efeitos dos fármacos , Músculo Esquelético/fisiologia , Fatores de Crescimento Neural/farmacologia , Neurônios Aferentes/fisiologia , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/genética , Receptor ErbB-2/deficiência , Reflexo Monosináptico/efeitos dos fármacos , Reflexo Monosináptico/genética , Medula Espinal/citologia , Potenciais Sinápticos/efeitos dos fármacos , Potenciais Sinápticos/genética , Potenciais Sinápticos/fisiologia
16.
Neurosci Res ; 72(2): 155-62, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22056284

RESUMO

The contribution of activated nociceptive muscle afferents to pathologically increased muscle tone remains obscure. The aim of the present study was to investigate whether an acute myositis of the gastrocnemius-soleus (GS) influences spinal reflex activity and to test whether Aδ-fibre or C-fibre were mainly responsible for any effects. In high spinal cats monosynaptic reflexes (MRs) of flexors and extensors and transmission in reflex pathways from group III and IV muscle afferents (activated by intra-arterial KCl injection) were investigated. After infiltration of GS with carrageenan there was a distinct increase in the MRs of flexors and extensors, coupled with facilitation of the flexors, induced by chemically activated group III and IV afferents. The inhibition evoked in extensors by these afferents was also mainly enhanced but less consistently. The reflex effects of carrageenan started within 1h and reached their maximum after about 1.5h. After blocking the input of all myelinated A-fibres, including Aδ-fibres, from the inflamed muscle by TTX, only a small facilitatory effect on MRs remained and the facilitation of excitatory transmission in the excitatory pathway to the flexor PBSt was abolished. The results show that the action of carrageenan-induced inflammation on spinal reflex function derives mainly from Aδ-fibres.


Assuntos
Miosite/fisiopatologia , Neurônios Aferentes/fisiologia , Reflexo Monosináptico/fisiologia , Animais , Carragenina/toxicidade , Gatos , Inflamação/induzido quimicamente , Irritantes/toxicidade , Músculo Esquelético/inervação , Miosite/induzido quimicamente , Medula Espinal/fisiologia
17.
Sheng Li Xue Bao ; 63(4): 291-9, 2011 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-21861046

RESUMO

Sciatic nerve injury is a common disease of peripheral nerve in clinic. After nerve injury, there are many dysfunctions in motoneurons and muscles following regeneration. Previous studies mostly investigated the aspects related to the injured nerve, and the effect on the recurrent inhibition (RI) pathway of spine following regeneration was not fully understood. Following reinnervation after temporary sciatic nerve crush, the functional alteration of RI was studied. In adult rats, RI between lateral gastrocnemius-soleus (LG-S) and medial gastrocnemius (MG) motor pools was assessed by conditioning monosynaptic reflexes (MSRs) elicited from the cut dorsal roots and recorded from either the LG-S or MG nerves by antidromic stimulation of the synergist muscle nerve. The following results were obtained. (1) The RI of MSRs in rats was almost lost (<5 weeks) after sciatic nerve crush. Although the RI partially recovered following reinnervation (6 weeks), it remained permanently depressed (up to 14 weeks). (2) Sciatic nerve crush on one side did not affect the contralateral RI. (3) Sciatic nerve crush did not induce any motoneuron loss revealed by immunohistochemistry. Peripheral nerve temporary disconnection causes long term alterations in RI pathway which make up motoneuron's function enhance for the alteration of muscle power and suggests that peripheral nerve injury induces long term plastic changes in the spinal motoneuron circuitry.


Assuntos
Depressão Sináptica de Longo Prazo/fisiologia , Reflexo Monosináptico/fisiologia , Nervo Isquiático/lesões , Medula Espinal/fisiopatologia , Animais , Masculino , Neurônios Motores/fisiologia , Compressão Nervosa , Regeneração Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios Aferentes/fisiologia , Ratos , Ratos Wistar , Nervo Isquiático/fisiopatologia , Raízes Nervosas Espinhais/fisiopatologia
18.
Life Sci ; 88(19-20): 886-91, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21447347

RESUMO

AIMS: The present study was undertaken to evaluate the role of nitric oxide (NO) in Mesobuthus tamulus (MBT) venom-induced depression of spinal reflexes. MAIN METHODS: Experiments were performed on isolated hemisected spinal cords from 4 to 6day old rats. Stimulation of a dorsal root with supramaximal strength evoked monosynaptic (MSR) and polysynaptic reflex (PSR) potentials in the corresponding segmental ventral root. KEY FINDINGS: Superfusion of MBT venom (0.3µg/ml) depressed the spinal reflexes in a time-dependent manner and the maximum depression was seen at 10min (MSR by 63%; PSR by 79%). The time to produce 50% depression (T-50) of MSR and PSR was 7.7±1.3 and 5.7±0.5min, respectively. Pretreatment with bicuculline (1µM; GABA(A) receptor antagonist) or strychnine (1µM; glycine(A) receptor antagonist) did not block the venom-induced depression of spinal reflexes. However, Nω-nitro-L-arginine methyl ester (L-NAME, 100 or 300µM; NO synthase inhibitor) or hemoglobin (Hb, 100µM; NO scavenger) antagonized the venom-induced depression of MSR. Further, soluble guanylyl cylase inhibitors (1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one, ODQ; 1µM or methylene blue, 100µM) also antagonized the venom-induced depression of MSR but not PSR. Nitrite concentration (indicator of NO activity) of the cords exposed to venom (0.3µg/ml) was not different from the control group. SIGNIFICANCE: The results indicate that venom-induced depression of MSR is mediated via NO-guanylyl cyclase pathway without involving GABAergic or glycinergic system.


Assuntos
Guanilato Ciclase/fisiologia , Óxido Nítrico/fisiologia , Reflexo Monosináptico/fisiologia , Venenos de Escorpião/farmacologia , Transdução de Sinais/fisiologia , Animais , Animais Recém-Nascidos , Inibidores Enzimáticos/farmacologia , Guanilato Ciclase/antagonistas & inibidores , Ratos , Reflexo Monosináptico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
19.
Clinics (Sao Paulo) ; 66(1): 125-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21437448

RESUMO

OBJECTIVE: The purpose was to assess functional (balance L-L and A-P displacement, sit-to-stand test (SST) and Tinetti scale - balance and gait) and neurophysiological aspects (patellar and Achilles reflex and strength) relating these responses to the BODE Index. INTRODUCTION: The neurophysiological alterations found in patients with chronic obstructive pulmonary disease (COPD) are associated with the severity of the disease. There is also involvement of peripheral muscle which, in combination with neurophysiological impairment, may further compromise the functional activity of these patients. METHODS: A cross-sectional study design was used. Twenty-two patients with moderate to very severe COPD (> 60 years) and 16 age-matched healthy volunteers served as the control group (CG). The subjects performed spirometry and several measures of static and dynamic balance, monosynaptic reflexes, peripheral muscle strength, SST and the 6-minute walk test. RESULTS: The individuals with COPD had a reduced reflex response, 36.77 ± 3.23 (p < 0.05) and 43.54 ± 6.60 (p < 0.05), achieved a lower number repetitions on the SST 19.27 ± 3.88 (p < 0.05), exhibited lesser peripheral muscle strength on the femoral quadriceps muscle, 24.98 ± 6.88 (p < 0.05) and exhibited deficits in functional balance and gait on the Tinetti scale, 26.86 ± 1.69 (p < 0.05), compared with the CG. The BODE Index demonstrated correlations with balance assessment (determined by the Tinetti scale), r = 0.59 (p < 0.05) and the sit-to-stand test, r = 0.78 (p < 0.05). CONCLUSIONS: The individuals with COPD had functional and neurophysiological alterations in comparison with the control group. The BODE Index was correlated with the Tinetti scale and the SST. Both are functional tests, easy to administer, low cost and feasible, especially the SST. These results suggest a worse prognosis; however, more studies are needed to identify the causes of these changes and the repercussions that could result in their activities of daily living.


Assuntos
Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Atividades Cotidianas , Idoso , Obstrução das Vias Respiratórias/fisiopatologia , Índice de Massa Corporal , Estudos de Casos e Controles , Estudos Transversais , Dispneia/fisiopatologia , Eletromiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Força Muscular/fisiologia , Equilíbrio Postural/fisiologia , Prognóstico , Reflexo Monosináptico/fisiologia , Espirometria , Estatísticas não Paramétricas , Caminhada/fisiologia
20.
Br J Pharmacol ; 164(1): 132-44, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21410685

RESUMO

BACKGROUND AND PURPOSE: Hypoxic effects on neuronal functions vary significantly with experimental conditions, but the mechanism for this is unclear. Adenosine has been reported to play a key role in depression of neuronal activities in the CNS during acute hypoxia. Hence, we examined the effect of acute hypoxia on different spinal reflex potentials and the contribution of adenosine to them. EXPERIMENTAL APPROACH: Spinal reflex potentials, monosynaptic reflex potential (MSR), slow ventral root potential (sVRP) and dorsal root potential (DRP), were measured in the isolated spinal cord of the neonatal rat. Adenosine release was measured by using enzymatic biosensors. KEY RESULTS: In the spinal cord preparation isolated from postnatal day 5-8 rats at 27°C, acute hypoxia induced adenosine release and depressed three reflex potentials. However, in postnatal day 0-3 rats at 27°C, the hypoxic-induced adenosine release and depression of MSR were negligible, while the depression of sVRP and DRP were perceptible responses. In postnatal day 0-3 rats at 33°C, hypoxia evoked adenosine release and depression of MSR. An adenosine A(1) receptor selective antagonist and a high [Ca(2+)](o), which suppressed adenosine release, abolished the hypoxic-induced depression of MSR but not those of sVRP and DRP. CONCLUSIONS AND IMPLICATIONS: Hypoxic-induced depression of MSR depends on adenosine release, which is highly susceptible to age, temperature and [Ca(2+)](o). However, a large part of the depressions of DRP and sVRP are mediated via adenosine-independent mechanisms. This differential contribution of adenosine to depression is suggested to be an important factor for the variable effects of hypoxia on neuronal functions.


Assuntos
Adenosina/metabolismo , Hipóxia/metabolismo , Vias Neurais/metabolismo , Neurônios/metabolismo , Medula Espinal/metabolismo , Raízes Nervosas Espinhais/metabolismo , Antagonistas do Receptor A1 de Adenosina/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Feminino , Masculino , Potenciais da Membrana/fisiologia , Purinas/metabolismo , Ratos , Ratos Wistar , Reflexo Monosináptico/fisiologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...